Protein Domain Formation in Lipid Membranes
نویسندگان
چکیده
منابع مشابه
Lipid peroxidation induces cholesterol domain formation in model membranes.
Numerous reports have established that lipid peroxidation contributes to cell injury by altering the basic physical properties and structural organization of membrane components. Oxidative modification of polyunsaturated phospholipids has been shown, in particular, to alter the intermolecular packing, thermodynamic, and phase parameters of the membrane bilayer. In this study, the effects of oxi...
متن کاملLipid-protein interactions in membranes.
The interactions of lipids with integral and peripheral proteins can be studied in reconstituted and natural membranes using spin label electron spin resonance (ESR) spectroscopy. The ESR spectra reveal a reduction in mobility of the spin-labelled lipid species, and in certain cases evidence is obtained for a partial penetration of the peripheral proteins into the membrane. The latter may be re...
متن کاملMicropattern formation in supported lipid membranes.
Phospholipid vesicles exhibit a natural tendency to fuse and assemble into a continuous single bilayer membrane on silica and several other substrate materials. The resulting supported membrane maintains many of the physical and biological characteristics of free membranes, including lateral fluidity. Recent advances, building on the supported membrane configuration, have created a wealth of op...
متن کاملPore formation in lipid membranes by alamethicin.
The conformation of the linear peptide antibiotic alamethicin in dipalmitoyl phosphatidylcholine multilayers was investigated in the absence of an electric field by means of infrared attenuated total reflection spectroscopy. Alamethicin was found to be incorporated into the lipid membrane not only in the dry state but also in an aqueous environment. Its molecular conformation, however, changed ...
متن کامل1,2-naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes.
PURPOSE Naphthalene induces cataract formation through the accumulation of its reactive metabolite, 1,2-naphthoquinone (1,2-NQ), in the ocular lens. 1,2-NQ increases lens protein oxidation and disrupts fiber cell membrane function; however, the association of these effects with changes in membrane structure is not understood. The goal of this study was to determine the direct effects of 1,2-NQ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2010
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.12.339